P2.1-10) The position of a particle moving along a straight line is given by $s(t) = t^2 + 2\sin(\omega t) - 10e^{(t/5)}$ meters, where t is in seconds and $\omega = 6$ rad/s. Determine the particle's velocity and acceleration at t = 20 seconds. Is the particle speeding up or slowing down?

Given:

Find:

Solution:

Velocity

Circle the equation the you will use to derive the velocity of the particle.

$$v = \frac{ds}{dt} \qquad a = \frac{dv}{dt} \qquad ads = vdv$$

$$ads = vdv$$

v(t) =

Acceleration

Circle the equation the you will use to derive the acceleration of the particle.

$$v = \frac{ds}{dt} \qquad a = \frac{dv}{dt} \qquad ads = vdv$$

 $a(t) = \underline{\hspace{1cm}}$

 $a_{t=20s} =$ _____

Is the particle speeding up or slowing down? Why?